Josephine N Nocillado, Elizur, Abigail , Avitan, Ayelet , Carrick, Frank , and Levavi-Sivan, Berta . 2007.
“Cytochrome P450 Aromatase In Grey Mullet: Cdna And Promoter Isolation; Brain, Pituitary And Ovarian Expression During Puberty”. Mol Cell Endocrinol, 263, 1-2, Pp. 65-78. doi:10.1016/j.mce.2006.08.013.
Abstract In a study towards elucidating the role of aromatases during puberty in female grey mullet, the cDNAs of the brain (muCyp19b) and ovarian (muCyp19a) aromatase were isolated by RT-PCR and their relative expression levels were determined by quantitative real-time RT-PCR. The muCyp19a ORF of 1515bp encoded 505 predicted amino acid residues, while that of muCyp19b was 1485 bp and encoded 495 predicted amino acid residues. The expression level of muCyp19b significantly increased in the brain as puberty advanced; however, its expression level in the pituitary increased only slightly with pubertal development. In the ovary, the muCyp19a expression level markedly increased as puberty progressed. The promoter regions of the two genes were also isolated and their functionality evaluated in vitro using luciferase as the reporter gene. The muCyp19a promoter sequence (650 bp) contained a consensus TATA box and putative transcription factor binding sites, including two half EREs, an SF-1, an AhR/Arnt, a PR and two GATA-3 s. The muCyp19b promoter sequence (2500 bp) showed consensus TATA and CCAAT boxes and putative transcription binding sites, namely: a PR, an ERE, a half ERE, a SP-1, two GATA-binding factor, one half GATA-1, two C/EBPs, a GRE, a NFkappaB, three STATs, a PPAR/RXR, an Ahr/Arnt and a CRE. Basal activity of serially deleted promoter constructs transiently transfected into COS-7, alphaT3 and TE671 cells demonstrated the enhancing and silencing roles of the putative transcription factor binding sites. Quinpirole, a dopamine agonist, significantly reduced the promoter activity of muCyp19b in TE671. The results suggest tissue-specific regulation of the muCyp19 genes and a putative alternative promoter for muCyp19b.
We recently produced Oreochromis niloticus recombinant LH and FSH as single-chain polypeptides in the methylotrophic yeast Pichia pastoris. Glycoprotein subunit alpha was joined with tilapia (t) LHbeta or tFSHbeta mature protein-coding sequences to form a fusion gene that encodes a ;;tethered" polypeptide, in which the gonadotropin beta-subunit forms the N-terminal part and the alpha-subunit forms the C-terminal part. Recombinant (r) gonadotropins were used to develop specific and homologous competitive ELISAs for measurements of FSH and LH in the plasma and pituitary of tilapia, using primary antibodies against rtLHbeta or rtFSHbeta, respectively, and rtLHbetaalpha or rtFSHbetaalpha for the standard curves. The wells were coated with either rtLHbeta (2ng/ml) or rtFSHbeta (0.5ng/well), and the final concentrations of the antisera were 1:5000 (for tLH) or 1:50,000 (for tFSH). The sensitivity of the assay was 15.84pg/ml for tLH and 0.24pg/ml for tFSH measurements in the plasma, whereas for the measurements in the pituitary, the sensitivity was 2.43ng/ml and 1.52ng/ml for tLH and tFSH, respectively. The standard curves for tFSH and tLH paralleled those of serially diluted pituitary extracts of other cichlids, as well as of serially diluted pituitary extract of seabream, European seabass and hybrid bass. We examined plasma tFSH and tLH levels in the course of one reproductive cycle, between two successive spawnings, in three individual tilapia females. Plasma levels of both FSH and LH increased during the second day after the eggs had been removed, probably related to the vitellogenic phase. LH levels increased toward spawning, which occurred on the 11th day. FSH levels also increased on day of cycle, probably due to recruitment of a new generation of follicles for the successive spawning. The development of specific ELISAs using recombinant gonadotropins is expected to advance the study of the distinct functions of each of these important hormones.
Two types of gonadotropin-releasing hormone (GnRH) receptors were found in the pituitary of tilapia (t), named GnRHR type 3 (tGnRHR3) and GnRHR type 1, according to phylogenetic analysis. tGnRHR3 is highly expressed in the posterior part of the pituitary which contains LH and FSH cells. We characterized tGnRHR3 in terms of both LH release rate and receptor internalization rate in response to continuous exposure to GnRH. Constant exposure of tilapia pituitary fragments to salmon GnRH analog (sGnRHa) resulted in an increased secretion rate for 3h, followed by a gradual decline, taking 17-19h, to the basal secretion rate. A chimera between tGnRHR3 and green fluorescent protein (GFP) was created and used to observe the changes in receptor distribution and translocation, activated by agonist with time. The results suggested that the receptor is initially localized at the plasma membrane and upon activation by a homologous ligand (e.g. sGnRHa) undergoes relatively rapid endocytosis. In summary, the present work demonstrates that tGnRHR3 has already undergone endocytosis after 30min, while desensitization of LH release occurs only after 17-19h. It is concluded that for tGnRHR3, internalization of the receptor is not exclusively responsible for the desensitization of LH release.
Joseph Aizen, Kasuto, Harel , Golan, Matan , Zakay, Hila , and Levavi-Sivan, Berta . 2007.
“Tilapia Follicle-Stimulating Hormone (Fsh): Immunochemistry, Stimulation By Gonadotropin-Releasing Hormone, And Effect Of Biologically Active Recombinant Fsh On Steroid Secretion”. Biol Reprod, 76, 4, Pp. 692-700. doi:10.1095/biolreprod.106.055822.
Abstract In fish, FSH is generally important for early gonadal development and vitellogenesis. As in mammals, FSH is a heterodimer composed of an alpha subunit that is noncovalently associated with the hormone-specific beta subunit. The objective of the present study was to express glycosylated, properly folded, and biologically active tilapia FSH (tFSH) using the Pichia pastoris expression system. Using this material, we aimed to develop a specific ELISA and to enable the study of FSH response to GnRH. The methylotrophic yeast P. pastoris was used to coexpress recombinant genes formed by fusion of mating factor alpha leader and tilapia fshb and cga coding sequences. Western blot analysis of tilapia pituitary FSH, resolved by SDS-PAGE, yielded a band of 15 kDa, while recombinant tFSH beta (rtFSH beta) and rtFSH beta alpha had molecular masses of 17-18 kDa and 26-30 kDa, respectively. Recombinant tFSH beta alpha was found to bear only N-linked carbohydrates. Recombinant tFSH beta alpha significantly enhanced 11-ketotestosterone (11-KT) and estradiol secretion from tilapia testes and ovaries, respectively, in a dose-dependent manner (similar to tilapia pituitary extract, affinity-purified pituitary FSH, and porcine FSH). Using antibodies raised against rtFSH beta, FSH-containing cells were localized adjacent to hypothalamic nerve fibers ramifying in the proximal pars distalis (PPD), while LH cells were localized in a more peripheral region of the PPD. Moreover, FSH is under the control of hypothalamic decapeptide GnRH, an effect that was abolished through the use of specific bioneutralizing antisera, anti-rtFSH beta. It also reduced basal secretion of 11-KT.